

A festive look at the Szlenk index

Dr Richard Smith

(http://maths.ucd.ie/~rsmith)

Theorem 1

If X is a separable Banach space, then X embeds isometrically in C[0,1].

Theorem 1

If X is a separable Banach space, then X embeds isometrically in C[0, 1].

Since C[0,1] is itself separable, we say that C[0,1] is isometrically universal for the class of separable Banach spaces.

Theorem 1

If X is a separable Banach space, then X embeds isometrically in C[0, 1].

Since C[0,1] is itself separable, we say that C[0,1] is isometrically universal for the class of separable Banach spaces.

Problem 2

Is there a separable reflexive Banach space *Y* that is *isomorphically* universal for the class of separable reflexive spaces?

Theorem 1

If X is a separable Banach space, then X embeds isometrically in C[0, 1].

Since C[0,1] is itself separable, we say that C[0,1] is isometrically universal for the class of separable Banach spaces.

Problem 2

Is there a separable reflexive Banach space *Y* that is *isomorphically* universal for the class of separable reflexive spaces?

In this talk, we sketch Szlenk's inventive negative solution of this problem.

Fact 3

Let $X=\ell_1.$ If U is any non-empty relatively w^* -open subset of $B_{X^*}=B_{\ell_\infty}$, then

$$||\cdot||$$
-diam $(U) = 2$.

Fact 3

Let $X=\ell_1.$ If U is any non-empty relatively w^* -open subset of $B_{X^*}=B_{\ell_\infty},$ then

$$||\cdot||$$
-diam $(U) = 2$.

Proposition 4

Let $(X, ||\cdot||)$ be a Banach space with $||\cdot||$ -separable dual.

Fact 3

Let $X=\ell_1$. If U is any non-empty relatively w^* -open subset of $B_{X^*}=B_{\ell_\infty}$, then

$$||\cdot||$$
-diam $(U) = 2$.

Proposition 4

Let $(X, ||\cdot||)$ be a Banach space with $||\cdot||$ -separable dual. Now take $\varepsilon > 0$ and a non-empty, w^* -compact subset $A \subseteq X^*$.

Fact 3

Let $X=\ell_1$. If U is any non-empty relatively w^* -open subset of $B_{X^*}=B_{\ell_\infty}$, then

$$||\cdot||$$
-diam $(U) = 2$.

Proposition 4

Let $(X, ||\cdot||)$ be a Banach space with $||\cdot||$ -separable dual. Now take $\varepsilon > 0$ and a non-empty, w^* -compact subset $A \subseteq X^*$. Then there exists a non-empty, relatively w^* -open subset $U \subseteq A$, such that

$$||\cdot||$$
-diam $(U) < \varepsilon$.

Definition 5

Let $\varepsilon > 0$ and $A \subseteq X^*$ be w^* -compact.

Definition 5

Let $\varepsilon > 0$ and $A \subseteq X^*$ be w^* -compact. Define

$$d_{\varepsilon}(A) = A \setminus \bigcup \{V : V \subseteq A \text{ is relatively } w^*\text{-open and } ||\cdot||\text{-diam}(V) < \varepsilon\}.$$

Definition 5

Let $\varepsilon > 0$ and $A \subseteq X^*$ be w^* -compact. Define

$$d_{\varepsilon}(A) = A \setminus \bigcup \{V : V \subseteq A \text{ is relatively } w^*\text{-open and } ||\cdot||\text{-diam } (V) < \varepsilon\}.$$

Remark 6

First, $d_{\varepsilon}(A)$ is w^* -compact.

Definition 5

Let $\varepsilon > 0$ and $A \subseteq X^*$ be w^* -compact. Define

$$d_{\varepsilon}(A) = A \setminus \bigcup \{V : V \subseteq A \text{ is relatively } w^*\text{-open and } ||\cdot||\text{-diam}(V) < \varepsilon\}.$$

Remark 6

First, $d_{\varepsilon}(A)$ is w^* -compact.

Second, by Proposition 1, there is a non-empty, relatively w^* -open subset $U\subseteq A$ with $||\cdot||$ -diam $(U)<\varepsilon$, hence

$$d_{\varepsilon}(A) \subseteq A \setminus U \subsetneq A$$
.

Definition 5

Let $\varepsilon > 0$ and $A \subseteq X^*$ be w^* -compact. Define

$$d_{\varepsilon}(A) = A \setminus \bigcup \{V : V \subseteq A \text{ is relatively } w^*\text{-open and } ||\cdot||\text{-diam}(V) < \varepsilon\}.$$

Remark 6

First, $d_{\varepsilon}(A)$ is w^* -compact.

Second, by Proposition 1, there is a non-empty, relatively w^* -open subset $U\subseteq A$ with $||\cdot||$ -diam $(U)<\varepsilon$, hence

$$d_{\varepsilon}(A) \subseteq A \setminus U \subsetneq A$$
.

We can iterate the process:

$$A \supseteq d_{\varepsilon}(A) \supseteq d_{\varepsilon}(d_{\varepsilon}(A)) \supseteq \ldots$$

Definition 7

Let X^* be $||\cdot||$ -separable. Given $\varepsilon > 0$, define $B_0^{\varepsilon} = B_{X^*}$.

Definition 7

Let X^* be $||\cdot||$ -separable. Given $\varepsilon > 0$, define $B_0^{\varepsilon} = B_{X^*}$.

If B_n^{ε} is non-empty, define $B_{n+1}^{\varepsilon}=d_{\varepsilon}(B_n^{\varepsilon})$.

Definition 7

Let X^* be $||\cdot||$ -separable. Given $\varepsilon > 0$, define $B_0^{\varepsilon} = B_{X^*}$.

If B_n^{ε} is non-empty, define $B_{n+1}^{\varepsilon}=d_{\varepsilon}(B_n^{\varepsilon})$.

If B_n^{ε} is non-empty for all n, define

$$B_{\omega}^{\varepsilon} = \bigcap_{n} B_{n}^{\varepsilon}.$$

Definition 7

Let X^* be $||\cdot||$ -separable. Given $\varepsilon > 0$, define $B_0^{\varepsilon} = B_{X^*}$.

If B_n^{ε} is non-empty, define $B_{n+1}^{\varepsilon}=d_{\varepsilon}(B_n^{\varepsilon})$.

If B_n^{ε} is non-empty for all n, define

$$B^{\varepsilon}_{\omega} = \bigcap_{n} B^{\varepsilon}_{n}.$$

In general, if B_{α}^{ε} is non-empty for some ordinal α , then $B_{\alpha+1}^{\varepsilon}=d_{\varepsilon}(B_{\alpha}^{\varepsilon})$.

Definition 7

Let X^* be $||\cdot||$ -separable. Given $\varepsilon > 0$, define $B_0^{\varepsilon} = B_{X^*}$.

If B_n^{ε} is non-empty, define $B_{n+1}^{\varepsilon}=d_{\varepsilon}(B_n^{\varepsilon})$.

If B_n^{ε} is non-empty for all n, define

$$B_{\omega}^{\varepsilon} = \bigcap_{n} B_{n}^{\varepsilon}.$$

In general, if B_{α}^{ε} is non-empty for some ordinal α , then $B_{\alpha+1}^{\varepsilon}=d_{\varepsilon}(B_{\alpha}^{\varepsilon})$.

And, if B_{α}^{ε} is non-empty for all $\alpha < \lambda$, where λ is a limit ordinal, then

$$B_{\lambda}^{\varepsilon} = \bigcap_{\alpha < \lambda} B_{\alpha}^{\varepsilon}.$$

Theorem 8

If $\varepsilon > 0$, then B_{α}^{ε} is empty for some *countable* ordinal α .

Theorem 8

If $\varepsilon > 0$, then B_{α}^{ε} is empty for some *countable* ordinal α .

Definition 9

Let α_n be the least (countable) ordinal such that $B_{\alpha_n}^{n-1}$ is empty.

Theorem 8

If $\varepsilon > 0$, then B_{α}^{ε} is empty for some *countable* ordinal α .

Definition 9

Let α_n be the least (countable) ordinal such that $B_{\alpha_n}^{n-1}$ is empty.

The Szlenk index of X is given by the countable ordinal

$$\operatorname{Sz}(X) = \sup_{n} \alpha_{n}.$$

Theorem 8

If $\varepsilon > 0$, then B_{α}^{ε} is empty for some *countable* ordinal α .

Definition 9

Let α_n be the least (countable) ordinal such that $B_{\alpha_n}^{n-1}$ is empty.

The Szlenk index of X is given by the countable ordinal

$$\operatorname{Sz}(X) = \sup_{n} \alpha_{n}.$$

Example 10

$$Sz(c_0) = Sz(H) = \omega.$$

Theorem 8

If $\varepsilon > 0$, then B_{α}^{ε} is empty for some *countable* ordinal α .

Definition 9

Let α_n be the least (countable) ordinal such that $B_{\alpha_n}^{n-1}$ is empty.

The Szlenk index of X is given by the countable ordinal

$$\operatorname{Sz}(X) = \sup_{n} \alpha_{n}.$$

Example 10

 $Sz(c_0) = Sz(H) = \omega$. For every countable ordinal α , there is a countable compact Hausdorff space K such that $Sz(C(K)) = \omega^{\alpha+1}$.

The endgame

Theorem 11

If X embeds isomorphically in Y, then

$$Sz(X) \leq Sz(Y)$$
.

The endgame

Theorem 11

If X embeds isomorphically in Y, then

$$Sz(X) \leq Sz(Y)$$
.

Theorem 12

If α is any countable ordinal, then there exists a separable reflexive Banach space X_{α} such that

$$\alpha \leq \operatorname{Sz}(X_{\alpha}).$$

The endgame

Theorem 11

If X embeds isomorphically in Y, then

$$Sz(X) \leq Sz(Y)$$
.

Theorem 12

If α is any countable ordinal, then there exists a separable reflexive Banach space X_{α} such that

$$\alpha \leq \operatorname{Sz}(X_{\alpha}).$$

Theorem 13 (Szlenk, 68)

If Y is separable and reflexive, then there is a separable, reflexive space X that does not embed isomorphically in Y.

